Sharp threshold for hamiltonicity of random geometric graphs
نویسندگان
چکیده
We show for an arbitrary lp norm that the property that a random geometric graph G(n, r) contains a Hamiltonian cycle exhibits a sharp threshold at r = r(n) = √ log n αpn , where αp is the area of the unit disk in the lp norm. The proof is constructive and yields a linear time algorithm for finding a Hamiltonian cycle of G(n, r) a.a.s., provided r = r(n) ≥
منابع مشابه
On Sharp Thresholds in Random Geometric Graphs
We give a characterization of vertex-monotone properties with sharp thresholds in a Poisson random geometric graph or hypergraph. As an application we show that a geometric model of random k-SAT exhibits a sharp threshold for satisfiability.
متن کاملMonotone properties of random geometric graphs have sharp thresholds
Random geometric graphs result from taking n uniformly distributed points in the unit cube, [0, 1]d, and connecting two points if their Euclidean distance is at most r, for some prescribed r. We show that monotone properties for this class of graphs have sharp thresholds by reducing the problem to bounding the bottleneck matching on two sets of n points distributed uniformly in [0, 1]d. We pres...
متن کاملMonotone Properties of Random Geometric Graphs Have Sharp Thresholds By
Random geometric graphs result from taking n uniformly distributed points in the unit cube, [0,1]d , and connecting two points if their Euclidean distance is at most r , for some prescribed r . We show that monotone properties for this class of graphs have sharp thresholds by reducing the problem to bounding the bottleneck matching on two sets of n points distributed uniformly in [0,1]d . We pr...
متن کاملA curious gap in one-dimensional geometric random graphs between connectivity and the absence of isolated node
One-dimensional geometric random graphs are constructed by distributing n nodes uniformly and independently on a unit interval and then assigning an undirected edge between any two nodes that have a distance at most rn. These graphs have received much interest and been used in various applications including wireless networks. A threshold of rn for connectivity is known as r∗ n = lnn n in the li...
متن کاملThe distant-2 chromatic number of random proximity and random geometric graphs
We are interested in finding bounds for the distant-2 chromatic number of geometric graphs drawn from different models. We consider two undirected models of random graphs: random geometric graphs and random proximity graphs for which sharp connectivity thresholds have been shown. We are interested in a.a.s. connected graphs close just above the connectivity threshold. For such subfamilies of ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 21 شماره
صفحات -
تاریخ انتشار 2007